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University of Washington

Abstract

Application of the Finite Element Method
to Random Rough Surface Scattering
with Neumann Boundary Conditions

by Kevin Krause

Chairperson of Supervisory Committee: Professor Leung Tsang

Abtrt Department of Electrical Engineering
Abstract: :,i,..-.,. . ." - . - fK..

L Scattering from a one-dimensional rough surface with Gaussian roughness spec-/
trum is analyzed using/ finite element formulation. The method is applied to Monte

Carlo simulations sat)sfying Neumann boundary conditions. Finite element results

are compared with results obtained by solving an integral equation. Convergence of/

the method is veri ed by varying the number of nodal points in the first order, trian-

gular mesh. Res/ts are in excellent agreement with tapered wave integral equation

solutions for large surface length after averaging over realizations. Finite element ad-

vantages in,( 14Y time and memory storage are presented for the examples discussed.

Comparisons with the Kirchoff approximation and small perturbation theory within

their respective regions of validity are also presented. Additionally, analysis of the ef-

fects of decreasing surface length )n incoherent scattering results of the finite element

method is accomplished to investigate the method's likely advantages for large-scale

scattering problems. Numerical Results of scattering are represented in terms of the

normaiized bistatic scattering cross section.
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Chapter 1

INTRODUCTION

Scattering of electromagnetic waves from rough surfaces has been extensively stud-

ied using the Rayleigh-Rice perturbation theory and the Kirchoff approximation

12,6,16,171. These classical approaches assume plant wave incidence upon arbitrar-

ily long surfaces and utilize statistical properties in calculating ensemble averages.

Each is, however, limited in its domain of validity which depends upon the surface

characteristics.

With the advent of modern computers, increased interest in Monte Carlo simula-

tions of scattering by random rough surfaces has evolved. In Monte Carlo simulations,

ensemble averages are calculated by averaging scattered field intensity over hundreds

of surface realizations. Computers are well suited for the task of averaging repetitive

calculations, nonetheless, it is important to minimize the computation time for each

realization.

The most common Monte Carlo method for an "exact" numerical result has been

the solution of the tapered wave integral equation by the method of moments [1,3,

5,16,17). A plane wave is tapered to avoid edge effects from a finite surface using a

Gaussian taper function which results in an incident wave consisting of an angular
spectrum of plane waves about an average incident angle. Since the width of the

angular spectrum is inversely proportional to surface length, large surface length

is required to better approximate plane wave incidence. The disadvantage of the

integral equation approach is that it requires solution of a full, complex matrix,

and for large scale rough surface problems, applicability of the method is limited by

available computer memory and CPU time.

In order to address these problems, application of the finite element method to

Monte Carlo simulations of rough surface scattering has recently been investigated for
one-dimensional Gaussian rough surfaces with periodic, Dirichlet boundary conditions

(8,9]. In this thesis, existing finite element code for Dirichlet boundary conditions is
converted and applied to Monte Carlo simulations of one-dimensional Gaussian rough
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surfaces with periodic, Neumann boundary conditions. Accuracy of tile results is veri-
fled by comparison with "exact" results determined through the use of a tapered wave

integral equation (TWIE) solution with large surface length. Two propagating Flo-

quet modes exist for each wavelength of surface length in the finite element approach.

Since evanescent waves rapidly decay above the rough surface, a total number of only

four to six evanescent modes are needed. In contrast, discretization in the integral

equation approach requires ten points per wavelength. Hence, for a surface with

L/A = 30, the TWIE approach requires 300 basis functions while 66 modes are suf-

ficient in the finite element approach [9]. Additionally, a full, complex matrix must

be solved for the TWIE approach while a sparse, real matrix must be solved for the

FEM approach. Thus, TWIE generally requires significantly more computer CPU

time and memory storage. Surfaces are generated using Monte Carlo surface genera-

tion routines with Gaussian roughness spectrum and specified statistics. Additional

comparisons with both the Rayleigh-Rice theory and the Kirchoff approximation in

their respective domains of validity are also made. Finally, tests are conducted to

analyze the effects of decreasing surface length on incoherent scattering results of the

finite element method. This is an important investigation since incoherent scattering

is the measured quantity in monostatic and bistatic scattering, and analysis of smaller

surface lengths requires much less CPU time and memory storage. The scattered field

quantity calculated is the normalized bistatic scattering cross section.



Chapter 2

FINITE ELEMENT METHOD

In the finite element approach,,scattering from an incident plane wave impinging

upon a one-dimensional, random rough surface with Gaussian statistics is considered.

Periodic boundary conditions are utilized to truncate the finite element mesh and to

discretize the plane wave spectrum [2]. In the formulation, the scattered field in the

region above the maximum height of the rough surface is expressed in terms of Floquet

modes. The finite element method is utilized to solve the wave equation below the

maximum height. The attraction of the finite element method is the banded nature of

the resulting matrix equation and reduced memory storage requirements over those of

the integral equation approach. Formulation of the finite element method is described

in detail in reference (9) and will only be briefly summarized here.

2.1 Formulation

The geometry of scattering from a one-dimensional, periodic rough surface (two-

dimensional scattering) in the xz plane is considered as illustrated in Figure 2.1. The

surface has a Gaussian roughness spectrum, W(K) = (h l/2V7)exp(-K12 /4), and

the iandom surface height is described by z = f(x) with rms surface height h and

correlation length I. The sample surface length L is extended periodically with period

L in order that periodic boundary conditions may be used. A plane wave is incident

on the surface with angle 0, from the vertical, and Neumann boundary conditions

are imposed on the surface. Above the surface, the xz plane is divided into regions I

and I!, the homogeneous and inhomogeneous regions respectively. Region I consists

of z >_ d and region II consists of d > z > f(x), with d chosen to be larger that the

maximum height of the rough surface.

All field quantities are assumed to have e- i' time dependence, and the incident

field is a plane wave of the following form:

j(Xz z) - eik ... " (2.1)
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where k,, = k sin 0,, k,, = k cos 0, and k = w p/'- = 27./A. The incident field here

differs from that used in the formulation of reference [9] by the factor e-",-". This

difference insures the same incident field for each realization despite variation in the

parameter d-a necessary condition for the calculation of the incoherent scattering

cross section. Use of periodic boundary conditions results in a discretization of the

scattered plane wave spectrum into Floquet modes [7]. The scattered fields in region

I consist of upward going waves only and can be expressed as:

,,)= Be' k ""(_+x- d) (2.2)

with

2r~
kx =

k kz{V k2 2  k 2 m 0
j _ k-2 km2 k2 > 0

m = 0,-1,+2,.... Modal field amplitudes Bm are unknowns which are to be

determined. From Floquet's theorem, 0,(x + L,z) = e"k"L, (x, z), and with dis-

crete incident angle index m0, k,, can be discretized by k,, = 27rno/L so that

0,(x + L,z) = 0,,(x,z). Incident angle can be any desired value since L/A is a real

number and not limited to an integer. Additionally, average scattered field intensity

is independent of surface length as long as many correlation lengths are included.

Truncating the Floquet expansion in equation (2.2) for the scattered field in region I

and expressing it in Fourier series such that all propagating modes and 2N5 number

of evanescent waves are included results in

N3
'(x,z) = z-, + Z Bmm,e'*qxe ',-(z-) (2.3)

with

V - (_2)
2 , ks. 2 > )2

0

_ k
2



where N3 = int(L/A) + NE and int(L/A) truncates L/A to an integer. Writing

equation (2.3) in the sine and cosine form of a Fourier series leads to

'(=, z) cos LT, - kuJ + isin [2-Tm - kj + aoe'k(z
-
d)

+ ] a cos + b. sin (2--) e'(z-d (2.4)

For region II (d > z > f(x)), the finite element method is applied to determine the

modal fields 0t1(x,z) where m is the modal index. Modal fields obey the following

equations:

(V + k 20['C(x,z) =0, m =0,1,2,...,N 3  (2.5)

(V +k2 ) 0t"(x,z) =0, m = !,2,3,...,N (2.6)

where superscripts c and s stand for cosine and sine respectively. Respective boundary

conditions for each are:
- 0 (2.7)

On

O.I'(-L/2, ) - .c(L/2, z) (2.8)

(x, ) )os IM(2.9)

= (2.10)
On

O,$ (-L/2,z) = 0"'(L/2,z) (2.11)

01.xd)= sin X)(2.12)

Equations (2.7) and (2.10) specify the Neumann boundary conditions and distinguish

the work accomplished in this thesis from that of references [8] and [9].

The wave equations (2.5) and (2.6) along with equations (2.7)-(2.12) allow conve-

nient solution for omt-' and 0,0 by the finite element method for each modal index

m. Discretization of region II is finite, and the modal field solutions are real, thus,

only a real, sparse matrix solver is required (18].
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After solving for the unknown modal fields, the total field in region II can be

expressed as:

V,"(x, z) = Foo"'(x, z) + E [F."I(x, z) + GrOnA"(X,z)] (2.13)

allowing the real boundary conditions of equations (2.9) and (2.12) to be used.

The required number of equations to determine the unknown modal amplitudes Bm

are obtained by matching the continuities of 01 and 011 and their normal derivatives

at z = d. From equations (2.4) and (2.13) and the orthogonal properties of the sine

and cosine functions, the following equations are obtained:

, e ;  + am=Fm, m =0,1,..., N3  (2.14)

ismoe-ikd+b. = Gm, m =1,2,...,N 3  (2.15)

T ,s dx1 (x, d) .I,6
Ozo

4.1 dx ex, d) + GA -(x, d)"
M=1 JO z Oz

k ,d 2 L /2rm ____ .

-k me- " + ik"am = IL dxzcos (LT-x)°Fo ' (xd ) (2.17)

.E ,1 dxcosN3 L (2 m )

x [FAf !r (x, d) + G? L (x, d)] MOO

+ikzmbm 1. dxsin (LIM-)Fo--z (x,d) (2.18)

2 N3 rL '2,m
2 0 dxsir (;, LAf =I d

X [F,,, (x, d)+ G,- (xd) m4OOz Om
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where 8,,. is the Kronecker delta. Substituting equations (2.14) and (2.15)'into
(2.16), (2.17), and (2.18) leads to the following equations in terms of the unknowns
ao, am, and b..

_ 2 1L o¢ .k I , ,
-i2kao + ao I dX 0x, (x,d)

LI~ 1 0
L%9fZl

+ N3am[2 IL x d.,). + 2 L 0,s(
S- O x d] Lo O

- 60. 2J dx -0' (x,d) (2.19)
L 0  ,1 /,2 L .9011 )U o. c L ,,,dx (x dU,-,-i-- dx2Axoz ,d)U.o-,I

+ GO 2 1 Ldxcos x) -(x, d)

+3 [2 L / (2m "x ObL(f.am d- J a cos x,- --) M t
M.=1 L j9

2 L dx cos 'lax) L(x, d]

,= f. dx2cos (-,,2-rmx) 2-(x,d) (2.20)

L1  L a2 1 ' (3
-C ) s 2 (xd)U, m-,

-jkbzy+o~ j'dsin-(--j') -x,d)-,, o
, 2 L 1oo
^" 2 co Lm x) L (x, d) .0 ]

+ aM~ "L~ (2sin 0,'

0  Oxa
+ d ,--, (!!xLLx,]
A' [I L. 2m\Ob '

+" Ez am dsn L-T) -- -(X,d)j
+b,11 [If/0 dxsin (2"Tx) 2!L(x,d)j

= e-" {ki*6 0 .0- omo TJ dxsin _ -- (x,d) (2.21)
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...dxsin (2,-x) 92.. (X. . U. ... . .

L2 . 2in L OZ';°  ..

-- ' dx sin ( -L%) - (x,,d)U._J, m 0

where Urn-i = 0 for normal incidence (m = 0) and U. = 1 for oblique incidence
(me # 0). In equations (2.19), (2.20), and (2.21), -(x,d) and 2Z-(x, d) are
evaluated using an IMSL subroutine which takes the derivatives of quadratic inter-
polation of ,1f C(x, z) and 0),f"(x, z) along the z direction. Integrations are evaluated
using Simpson's rule. After ao, am, and b. are determined, the unknown modal field
amplitudes, Bin, can be determined by the following:

B_, = 00 (2.22)

1
B, _ns = !(a. - ib,), N3  m > 0 (2.23)

1
B-..,= !(a. + ib,), N3 _ m > 0 (2.24)

2

2.2 Implementation

Neumann boundary conditions are a natural result of the Galerkin procedure applied
to the finite element method here. In the finite element implementation, three general
factors affect the accuracy of the solution: (i) N , the number of nodes along the
x-axis, (ii) N,, the number of nodes along the z-axis, and (iii) 2NE, the number of
evanescent modes considered. The parameter d must be set to be above the maximum
height of the rough surface allowing some variation of the field from its surface value
to its value at z = d, yet small enough to minimize the number nodes in the z
direction. Convergence of the method is verified by increasing N,, N., and 2NE. As

it turns out, the number of evanescent modes is not a sensitive parameter relative
to power-conservation tests 191 For the numerical examples examined with the finite
element method, thv following parameter values are used, 2NE = 4, N,/A , 10 and
N,1I - 7 for I = 0.4A and N,/A ;: 10 for I = A. The parameter d is set at 0.1A above
the maximum surface height for each realization.

Following standard finite element procedure, region I1 is divided into a number
of first-order, triangular elements. The modal field for each mode m within each
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element (e) is expressed in terms of the field at the three nodes of each triangle in
the following matrix notation:

( = [N)J {o(e)} (2.25)

Field values at the three nodes are represented by ,(, [N(e)J are linear interpolation
functions for each element (e), and {.} and L.J denote a column and row vector
respectively. Complete representation of the modal field in region II consisting of M
elements follows:

M M

Z) = E)( -) = [N(e)j {V(c)} (2.26)

After substituting equation (2.26) into equations (2.5) and (2.6) and applying the

Galerkin procedure, the following results:

[A]{ } {P} (2.27)

where

(A) ON() OX O O dxdz

-k 2  f{Ne) [NC Jdxdz-]

Region II has a total of NtN. free and prescribed nodes and 2(N. - 1)(N - 1)
number of elements. There are N number of prescribed nodes at the boundary z = d.

Neumann boundary conditions are a natural result of the Galerkin procedure. Hence,
surface nodes are considered free nodes and surface node field values are determined
in the same manner as nodal field values in the interior of region 11. For periodic
boundary conditions at x and x + L, field values must be identical but their values
are unknown. The periodicity is satisfied by setting the global node numbers at z

and z + L to the same value for a fixed z. As a result, 0b in (2.29) is a (A, - 1)(N, -1)
column vector of free nodes only, (A] is a (N - 1)(N, -1) by (N - 1)(N - 1) real and
symmetric matrix with half-bandwidth 2N, corresponding to the global assembly of
free nodes. P is a (N - 1)(NI - 1) column vector of assembled prescribed nodes.
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Equation (2.27) must be solved once for each of the (2N 3 + 1) modes in (2.5) and
(2.6). A direct sparse matrix solver utilizing LU decomposition and backsubstitution

is used [18]. Since [A] is sparse and symmetric, profile storage of its upper half only
significantly reduces memory storage requirements. The square matrix [A] contains

only free nodes and remains unchanged for all of the modes, hence, the matrix solver
accomplishes LU decomposition once and backsubstitution (2N 3 + 1) times.

Results of the TWIE method are computed in terms of the bistatic scattering
cross section as defined in [16]. For convenience, TWIE results are plotted using a

normalized cross section a(O,)/ cos 9 so that the integral over all scattered angles 0,
reduces to unity for power conservation. In the discrete case of the finite element
method, the sum of scattered power over all discrete scattered angles 0. must re-
duce to unity. Since SZIB, 2 cos 0/cos0, = fdOmLcosOlB," 2 cosO,/cosOi, the

normalized bistatic scattering cross section for all discrete scattered angles is defined

as LIB, 12 cos 2 0 m/ cos Oi.

2.3 Decomposition into Coherent and Incoherent Scattering

Analysis of the effects of decreasing surface length on finite element results over 100
realizations is accomplished by plotting the incoherent scattering cross section. This
is an important result since it is the measured quantity in monostatic and bistatic

scattering. The incoherent scattering cross section is calculated by first determining
the incoherent intensity as defined in the following:

< 10.m12 > -I < ,P. > 12 (2.28)

where

(2.29)

< 10m1
2 > is the total scattered intensity, I < 0, > .12 is the coherent scattered

intensity, and m = 0,:l,:2,.... Since the parameter d varies with each surface

realization depending upon its respective maximum height, the ek,(:
-

d) phase term
must be considered in the incoherent scattering cross section calculation. Therefore,

after the modal scattered fields B,, are determined for each surface realization, their

corresponding t0m values are determined at z = dmr. The value for dmr is defined
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as the maximum d value for all 100 realizations. Hence, each field value and the

subsequent incoherent scattering cross section calculation is referenced to a common

phase point at the maximum d.

M
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Chapter 3

PERTURBATION THEORY

The Rayleigh-Rice small perturbation theory (SP) is typically thought to be valid

for slightly rough surfaces. More specifically, the rms surface height h should be small

compared to wavelength of the incident field. This is usually expressed as kh < 1

with k being the wavenumber 117). A recent study by Thorsos in reference [171 better

clarifies the limits of validity of the first order perturbation theory which is used here

for comparison with the finite element method.

3.1 Formulation

In the classical approach to the perturbation theory, the scattered field is represented

as a superposition of outgoing plane waves (17). The scattered intensity is averaged us-

ing the statistical properties of the rough surfaces. Considering plane wave incidence

and expressing the scattered field as a superposition of plane waves, the following

expression for the scattered field in the region above the rough surface results:

= B(3.1)

The unknown scattered plane wave amplitudes are represented by Bin. Applying

Neumann boundary conditions on the surface, expanding in smallness, and averag-

ing according to statistical theory, the following expression results for the average

scattered intensity:

fk - 4o.k; - k, 2 h21 -< , ,m2  L&iin +- (3,2)

where

L
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p = k,- k,.
2 rm

L is the surface length, h is the rms surface height, I is the correlation length, and
mo is the discrete incident angle index as in the finite element analysis. Both the

coherent and incoherent contributions to the average scattered intensity are included

in equation (3.2) with the Kronecker delta function representing the coherent com-

ponent. The one-dimensional equivalent to the normalized bistatic scattering cross

section required for comparison with finite element results follows from the average

scattered intensity:

LcosW= 2  b.ro +4 [k,2 - kk, - k2]2 hl 27(
cosO- I k2

Perturbation results are presented in terms of discretk cattered angles in an identical

manner to the finite element method.



Chapter 4

KIRCHOFF APPROXIMATION

The Kirchoff approximation (KA) is generally thought to apply to gently undu-

lating sufaces which are defined as surfaces with a radius of curvature that is large

compared to a wavelength. This criterion places no general restrictions upon the

surface height, and the Kirchoff approximation has been applied to higher frequency

cases than the perturbation theory as a result. Recent investigations by Thorsos

better quantify the domain of validity for the Kirchoff approximation as presented in

reference [16).

4.1 Formulation

The classical starting point for the Kirchoff approximation is the Helmholtz integral

which defines the scattered field in relation to the surface field as presented in the

following:

0(r) =ds' [(r) OGo ,rr') _ Go(r,-r') ] (4.1)

The following substitutions are made for the appropriate far field Green's function,

Neumann boundary conditions, and assumed plane wave incidence:

Go 1H (kji- r' 1) ; ( e- i e kr (4.2)

00(r')
On. = 0 (4.3)

0(r) = 2¢,(r') (4.4)

0, (r') = e
i k

k
' -

.
k
,/(V) = eki(4.5)

Theoretical averaging of the scattered intensity is accomplished using the statistical

properties of the rough surface as in the perturbation theory. Combining the coherent
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and incoherent contributions to the normalized bistatic scattering cross section, the

following results:

I e-2 (Ik' )
2 [4 sin2 

(Y-;L) '/;h2 (4.)6)z*l2Offi) = ~ \v ) j Lv~ ,~n!~/~ ~(4.6)

where

kj = 2,.
L

v = k(sin O - sin 0m):k - k(cos O + cos 0.)2

ks = ksinOm:+kcosOm

v = k(sin0, -sin 0.)

v = k(cosOi+cos0,,)

Results are presented in terms of discrete scattered angles in an identical manner to

the finite element method.



Chapter 5

NUMERICAL RESULTS

Numerical results and comparisons of FEM, TWIE, SP, and KA are presented

in this chapter. Section 5.1 provides convergence test results for FEM with respect

to the number of nodes in both the x and z directions. Section 5.2 compares the

FEM and TWIE result for the analysis of a single surface realization. Comparisons

between FEM and TWIE with respect to required computer CPU time and memory

storage are presented in section 5.3. Section 5.4 presents a comparison oi each of the

four approaches for various surface characteristics. Power conservation test results

are compared for FEM and TWIE in section 5.5. Final!y, section 5.6 presents an

analysis of the effects of decreasing surface length on FEM results.

For each FEM and TWIE result in sections 5.4, 5.5, and 5.6, 100 surface realiza-

tions are generated with predetermined rms surface height, h/A, correlation length,

I/A, and surface length, L/A. The rms surface slope s, rms height, correlation length,

and rms slope angle -y are related by s = v2_h/I = tan y. The FEM and TWIE
programs are then executed in order to calculate the ensemble average over the real-

izations. In the TWIE method, the incident wave consists of a plane wave which is

tapered using a Gaussian taper function. The result is an incident wave consisting

of an angular spectrum of plane waves about the incident angle with a width of ap-

proximately 4A/(v27,LcosO,) [16]. TWIE results presented in this thesis are based

on the computer code of reference [4].

5.1 Convergence of FEM with Respect to N, and N,

Figure 5.1 illustrates the effect on the finite element result of increasing the number

of nodes in the x direction from N. = 301 to N, = 601 for a single realization with

Oi = 00, h/A = 0.1, l/A - 1.0, and L/A, = 30.2. Figure 5.2 illustrates the effect of

increasing the number of nodes in the z direction from N, = 8 to N. = 15 for the
same realization. In each case, there is virtually no noticeable difference between the
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respective dB plots. Hence, these two plots demonstrate convergence of the FEM
result with respect to the number of nodes in both the x and z directions.

5.2 Comparison of FEM and TWIE for a Single Realization

Figure 5.3 compares the result of FEM and TWIE analysis of the same surface re-
alization used to test FEM convergence with respect to increasing N and N. It is
evident that differences do exist between the two methods for a single realization.
This is to be expected as the FEM and TWIE approaches effectively see two different
realizations since the former has periodic boundary conditions and the latter utilizes
a tapered incident wave. With surface length L/A = 30.2, the incident wave has an
angular width of about -1.5" with 0, = 0' for TWIE. Despite differences between
FEM and TWIE for a single realization, results are excellent upon averaging over
many realizations as illustrated in section 5.4.

5.3 Comparisons of CPU Time and Memory Storage

In Figures 5.4 and 5.5, CPU time and memory storage requirements for FEM and

TWIE approaches are compared. Results are based upon the use of a VAX Station
3500 for a single realization with h/A = 0.1 and I/A = 0.4. Plots are made as a
function r' surface length with CPU time presented in seconds and memory storage
presented in Megabytes. It is evident from the plots that TWIE generally requires
more CPU time and memory storage than FEM. This is true when considering scat-

tering problems where dimensions of the scattering geometry are much greater in one
direction than in the other. Scattering from a one-dimensional surface with large
surface length meets this criterion, hence, the sparsity of the real FEM matrix for

solving equation (2.27) results in significant savings in CPU time and memory stor-
age as comparedto TWIE which requires full, complex matrix solution and storage.
The disparity between the two methods becomes more significant as surface length
increases, and it should be noted that a large surface length is required in the TWIE
approach in order to minimize the angular spectrum of the incident field and more
accurately predict the scattering cross section.
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5.4 Comparison over 100 Realizations

Figure 5.6 compares the analytical perturbation theory to the FEM and TWIE results

averaged over 100 surface realizations with Oi = 44.060 (mo = 21), h/A = 0.05,

I/A = 0.4, and L/A = 30.2. Surface characteristics are in the domain of validity of

the small perturbation theory, and results agree well with FEM and TWIE results.

A comparison between the small perturbation theory and FEM for Neumann and

Dirichlet boundary conditions is presented in Figure 5.7. Dirichlet results are based
on the finite element code of reference (9]. Surface characteristics are the same as

in the previous illustration. Neumann boundary conditions result in a more diffuse

scattered field than that of the Dirichlet as is evident in Figure 5.7. Results in Figure

5.8 compare the Kirchoff approximation to FEM and TWIE. Surface realizations are

such that 0, = 0' (io = 0), h/A = 0.1, 1/A = 1.0, and L/A = 70.5. The Kirchoff

approximation is considered valid in this case, and results are excellent except for

scattered grazing angles beyond ±50' where KA underpredicts the scattered intensity.

Figure 5.9 illustrates the effect of increasing the rms slope angle Y which becomes

19.470 as compared to 8.05* in Figure 5.8. As expected, the angular distribution of the

incoherent component to scattering cross section is increased. With O = 44.060 (no =

21), h/A = 0.1, I/A = 0.4, and L/A = 30.2, KA results are excellent for 0, > 200, but

KA significantly underpredicts scattered intensity for 0, < 20'. In Figure 5.10, h/A

has been increased from 0.1 to 0.2. As expected, the coherent component (specular

peak) is significantly reduced from that of Figure 5.9. The KA results are generally

poor except for 10' < 0, < 470 although improvement over Figure 5.9 is evident

for 0, < 0*. The rms height h/A is increased to 0.4 in Figure 5.11 which results in

7 = 54.74*. KA is no longer valid, hence, only FEM and TWIE results are presented.

As in all previous plots averaged over 100 realizations, agreement between TWIE and

FEM is excellent. The specular peak has completely subsided in Figure 5.11 which

is not surprising given the rather large rms height specified.

5.5 Comparison of Power Conservation Tests

Table 5.1 compares power conservation results of FEM and TWIE for Figure 5.6 and

Figures 5.8-5.10. Negative values indicate an overprediction of scattered power, while
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positive values indicate an underprediction. In general, FEM has less error in terms
of power conservation than TWIE with the largest value being only -7.9 x 10- a

percent.

6.6 FEM Result Dependence on Surface Length

In order to investigate the effects of decreasing surface length on FEM results, further
tests with 100 surface realizations are conducted. The coherent component to the
scattering cross section is subtracted to avoid plotting a specular peak which broadens
with decreasing surface length. Incoherent intensity, < 10m 12 > _I < 0" > 12, is
calculated at the maximum d for all 100 surface realizations. Surface realization

characteristics h/A = 0.141 and 1 = 0.4 for all surface lengths are chosen to produce
a relatively high rms slope of s = 0.5. High rms slope for the realizations insures

a broad angular distribution of the incoherent result. Figure 5.12 illustrates the
removal of the coherent contribution to the total scattering cross section for L/A =
30.2. A depression in the incoherent scattering cross section at O. = O zesults after
removing the specular peak. This occurrence is unexplained by scattering theory, and
more work is required to determine why it exists. The incoherent result of Figure
5.12 is plotted against results of all other surface lengths tested. Surface length is
decreased in approximately 5A intervals from L/A = 30.2. Actual surface length
values are arrived at through consideration of integer values for mo in order that
Oi ; 44.060 for all surfaces tested. Table 5.2 displays the specific criteria chosen
for each test. Figures 5.13-5.17 compare the incoherent result for respective surface
lengths of 24.45A, 20.13A, 14.38A, 10.07A, and 4.31A. An IMSL subroutine is used
to interpolate points for L/A < 14.38. Excellent agreement can be seen between
results down to L/A = 10.07. Results for L/A = 4.31 are also excellent for 0m < 30*.
However, due to the limited number of scattered angles for which scattering cross
section values are calculated, the dip at 0, = Oi has a significant effect. Table 5.2 also
compares required computer storage and CPU time for each test. Memory storage is
presented in megabytes for a single realization, and CPU time is presented in seconds
for the full 100 realizations on a VAX 6000.440 workstation. Significant savings
between L/A = 30.2 and L/A = 10.07 in storage and CPU time is evident. Test results
are encouraging for eventual FEM analysis of two.dimensional surface scattering.
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Since the surface length required for accurate FEM results is relatively small, it is
possible that CPU time and memory storage could be kept within reasonable limits.
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Table 5.1: Percent Error Comparison Between FEM and TWIE

Figure # h/A I/A L/A IT: N FEM TWIE

5.6 0.05 0.40 30.20 525 8 1 -2.2 x 10-3% 0.3%

5.8 0.10 1.00 70.50 705 8 4.7 x 10-% 3.8%

5.9 0.10 0.40 30.20 525 8 -7.9 x 10-3% 1.1%

5.10 0.20 0.40 30.20 525 15 2.9×10"% 2.6%
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Table 5.2: FEM Comparison for Different Surface Lengths

Figure # L/.A mo 0, N,, N. Memory (MB) CPU Time (sec)

5.12 30.20 21 44.060 525 13 1.41 1.108 x 10,

5.13 24.45 17 44.05 ° 427 13 1.09 6.750 X 103

5.14 20.13 14 44.070 351 13 0.87 4.482 x 103

5.15 14.38 10 44.060 251 13 0.59 2.326 x 103

5.16 10.07 7 44.040 175 13 0.40 1.285 x 103

5.17 4.31 3 44.110 75 13 0.16 3.561 x 10'
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Chapter 6

CONCLUSIONS

The finite element method is applied to rough surface scattering with periodic,
Neumann boundary conditions. Convergence of the result is verified by varying the
number of nodes in both the x and z directions. Accuracy is proven through compar-
ison with "exact" results of an integral equation solution and by power conservation
tests. Comparisons with the Rayleigh-Rice small perturbation theory and Kirchoff
approximations are also made in their respective regions of validity. Finite element
advantages over the integral equation approach in both computer CPU time and

required memory storage are demonstrated,
Additional tests show that the surface length necessary for accurate incoherent

scattering cross section for the finite element solution is as little as 10.07A. As a
result, substantial savings in required memory storage and CPU time are realized.
Additional research is needed in order to explain the resulting depression in the in-
coherent scattering cross section at 0m = 0,. The depression which existed after
removal of the specular peak is unexpected and is not explained by scattering theory.
However, results obtained are significant as they make it likely that the finite ele-

ment method will prove to be a feasible approach to large-scale scattering problems
including two-dimensional surface scattering.
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